397 research outputs found

    Nontuberculous mycobacteria in hospital water systems: Application of HPLC for identification of environmental mycobacteria

    Get PDF
    Nontuberculous mycobacteria (NTM), ubiquitous in water environments, are increasingly recognized as nosocomial pathogens. Our study reports a one-year survey of the water system of two hospitals, A and B, in a small town near Florence, Italy. NTM were found throughout the study period in both settings, but B showed a significantly higher mycobacterial load. Mycobacterium gordonae and Mycobacterium fortuitum were the most frequent species isolated. Identification was carried out by conventional techniques and by high performance liquid chromatography (HPLC) analysis of cell wall mycolic acids. HPLC profiling could be used as a first-choice method for identification of environmental mycobacteria

    Use of WGS in M. tuberculosis routine diagnosis

    Get PDF
    AbstractWhole Genome Sequencing (WGS) is becoming affordable with overall costs comparable to other tests currently in use to perform the diagnosis of drug resistant tuberculosis and cluster analysis. The WGS approach allows an ā€œall-in oneā€ approach providing results on expected sensitivity of the strains, genetic background, epidemiological data and indication of risk of laboratory cross-contamination.Although ideal, WGS from the direct diagnostic specimen is not yet standardized and up today the two most promising approaches are WGS from early positive liquid culture and targeted sequencing from diagnostic specimens using Next Generation Technology. Both have advantages and disadvantages. Sequencing from early MGIT requires positive cultures while targeted sequencing can be performed from a specimen positive for M. tuberculosis with a consistent gain in time to information. Aim of this study is to evaluate the feasibility and cost to use WGS with a centralized approach to speed up diagnosis of tuberculosis in a low incidence country.From March to September 2016 we collected and processed by WGS 89 early positive routine MGIT960 tubes. Time to diagnosis and accuracy of this technique were compared with the standard testing performed in the routine laboratory.An aliquot of 2ml of early positive MGIT was processed, starting with heat inactivation. DNA was then isolated by using the Maxwell 16 Cell DNA Purification Kit and Maxwell 16 MDx for automated extraction. Paired-end libraries of read-length 75ā€“151bp were prepared using the Nextera XT DNA Sample Preparation kit, and sequenced on Illumina Miseq/Miniseq platform (based on the first available run). Total variant calling was performed according to the pipeline of the Phyresse web-tool.The DNA isolation step required 30ā€² for inactivation plus 30ā€² for extraction. The concentration obtained ranged from 0.1 to 1ng/Ī¼L, suitable for library preparation. Samples were sequenced with a turn around time of 24ā€“48h. The percentage of reads mapped to H37Rv reference genome was 83% on average. Mean read coverage was 65Ɨ. Main challenge was the presence of nonā€“mycobacterial DNA contamination in a variable amount. Lineage detection was possible for all cases, and mutations associated to drug resistance to antitubercular drugs were examined. We observed high diagnostic accuracy for species identification and detection of full drug resistance profile compared to standard DST testing performed in MGIT.Two events of recent transmissions including respectively three and two patients were identified and two laboratory cross-contamination were investigated and confirmed based on the analysis. Time to availability of report was around 72h from MGIT positivity compared to up to 6ā€“9weeks for XDR-TB diagnosis with standard testing.In addition to speed, main advantages were the availability of a full prediction of resistance determinants for rifampicin resistant cases, the fast detection of potential cross-contaminations and clusters to guide epidemiological investigation and cross border tracing.Cost analysis showed that the cost per strain was approximately 150 Euro inclusive of staff cost, reagents and machine cost.WGS is a rapid, cost-effective technique that promises to integrate and replace the other tests in routine laboratories for an accurate diagnosis of DR-TB, although suitable nowadays for cultured samples only

    Ultrasound Open Platforms for Next-Generation Imaging Technique Development

    Get PDF
    Open platform (OP) ultrasound systems are aimed primarily at the research community. They have been at the forefront of the development of synthetic aperture, plane wave, shear wave elastography, and vector flow imaging. Such platforms are driven by a need for broad flexibility of parameters that are normally preset or fixed within clinical scanners. OP ultrasound scanners are defined to have three key features including customization of the transmit waveform, access to the prebeamformed receive data, and the ability to implement real-time imaging. In this paper, a formative discussion is given on the development of OPs from both the research community and the commercial sector. Both software- and hardware-based architectures are considered, and their specifications are compared in terms of resources and programmability. Software-based platforms capable of real-time beamforming generally make use of scalable graphics processing unit architectures, whereas a common feature of hardware-based platforms is the use of field-programmable gate array and digital signal processor devices to provide additional on-board processing capacity. OPs with extended number of channels (>256) are also discussed in relation to their role in supporting 3-D imaging technique development. With the increasing maturity of OP ultrasound scanners, the pace of advancement in ultrasound imaging algorithms is poised to be accelerated

    Prospecting environmental mycobacteria: combined molecular approaches reveal unprecedented diversity

    Get PDF
    Background: Environmental mycobacteria (EM) include species commonly found in various terrestrial and aquatic environments, encompassing animal and human pathogens in addition to saprophytes. Approximately 150 EM species can be separated into fast and slow growers based on sequence and copy number differences of their 16S rRNA genes. Cultivation methods are not appropriate for diversity studies; few studies have investigated EM diversity in soil despite their importance as potential reservoirs of pathogens and their hypothesized role in masking or blocking M. bovis BCG vaccine. Methods: We report here the development, optimization and validation of molecular assays targeting the 16S rRNA gene to assess diversity and prevalence of fast and slow growing EM in representative soils from semi tropical and temperate areas. New primer sets were designed also to target uniquely slow growing mycobacteria and used with PCR-DGGE, tag-encoded Titanium amplicon pyrosequencing and quantitative PCR. Results: PCR-DGGE and pyrosequencing provided a consensus of EM diversity; for example, a high abundance of pyrosequencing reads and DGGE bands corresponded to M. moriokaense, M. colombiense and M. riyadhense. As expected pyrosequencing provided more comprehensive information; additional prevalent species included M. chlorophenolicum, M. neglectum, M. gordonae, M. aemonae. Prevalence of the total Mycobacterium genus in the soil samples ranged from 2.3Ɨ107 to 2.7Ɨ108 gene targets gāˆ’1; slow growers prevalence from 2.9Ɨ105 to 1.2Ɨ107 cells gāˆ’1. Conclusions: This combined molecular approach enabled an unprecedented qualitative and quantitative assessment of EM across soil samples. Good concordance was found between methods and the bioinformatics analysis was validated by random resampling. Sequences from most pathogenic groups associated with slow growth were identified in extenso in all soils tested with a specific assay, allowing to unmask them from the Mycobacterium whole genus, in which, as minority members, they would have remained undetected

    Revisiting susceptibility testing in MDR-TB by a standardized quantitative phenotypic assessment in a European multicentre study

    Get PDF
    Objectives Treatment outcome of MDR-TB is critically dependent on the proper use of second-line drugs as per the result of in vitro drug susceptibility testing (DST). We aimed to establish a standardized DST procedure based on quantitative determination of drug resistance and compared the results with those of genotypes associated with drug resistance. Methods The protocol, based on MGIT 960 and the TB eXiST software, was evaluated in nine European reference laboratories. Resistance detection at a screening drug concentration was followed by determination of resistance levels and estimation of the resistance proportion. Mutations in 14 gene regions were investigated using established techniques. Results A total of 139 Mycobacterium tuberculosis isolates from patients with MDR-TB and resistance beyond MDR-TB were tested for 13 antituberculous drugs: isoniazid, rifampicin, rifabutin, ethambutol, pyrazinamide, streptomycin, para-aminosalicylic acid, ethionamide, amikacin, capreomycin, ofloxacin, moxifloxacin and linezolid. Concordance between phenotypic and genotypic resistance was >80%, except for ethambutol. Time to results was short (median 10 days). High-level resistance, which precludes the therapeutic use of an antituberculous drug, was observed in 49% of the isolates. The finding of a low or intermediate resistance level in 16% and 35% of the isolates, respectively, may help in designing an efficient personalized regimen for the treatment of MDR-TB patients. Conclusions The automated DST procedure permits accurate and rapid quantitative resistance profiling of first- and second-line antituberculous drugs. Prospective validation is warranted to determine the impact on patient car

    High prevalence of clustered tuberculosis cases in peruvian migrants in Florence, Italy.

    Get PDF
    Tuberculosis is a leading cause of morbidity for Peruvian migrants in Florence, Italy, where they account for about 20% of yearly diagnosed cases. A retrospective study on cases notified in Peruvian residents in Florence in the period 2001-2010 was carried out and available Mycobacterium tuberculosis strains were genotyped (MIRU-VNTR-24 and Spoligotyping). One hundred thirty eight cases were retrieved. Genotyping performed in 87 strains revealed that 39 (44.8%) belonged to 12 clusters. Assuming that in each cluster the transmission of tuberculosis from the index case took place in Florence, a large proportion of cases could be preventable by improving early diagnosis of contagious cases and contact tracing
    • ā€¦
    corecore